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ABSTRACT

In the global energy context, renewable energy sources such as wind is considered as a 
credible candidate for meeting new energy demands and partly substituting fossil fuels. 
Modelling and forecasting wind speed are noteworthy to predict the potential location 
for wind power generation. An accurate forecasting of wind speed will improve the value 
of renewable energy by enhancing the reliability of this natural resource. In this paper, 
the wind speed data from year 1990 to 2014 in 18 meteorological stations throughout 
Peninsular Malaysia were modelled using the Autoregressive Integrated Moving Average 
(ARIMA) to forecast future wind speed series. The Ljung-Box test was used to determine 
the presence of serial autocorrelation, while the Engle’s Lagrange Multiplier (LM) test was 
used to investigate the presence of Autoregressive Conditional Heteroscedasticity (ARCH) 

effect in the residual of the ARIMA model. 
In this study, three stations showed good fit 
using the ARIMA modelling since no serial 
correlation and ARCH effect were present in 
the residuals of the ARIMA model, while the 
ARIMA-GARCH had proven to precisely 
capture the nonlinear characteristic of the 
wind speed daily series for the remaining 
stations. The forecasting accuracy measure 
used was based on the value of root mean 
square error (RMSE) and mean absolute 
percentage error (MAPE). Both ARIMA and 
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ARIMA-GARCH model proposed provided good forecast accuracy measure of wind speed 
series in Peninsular Malaysia. These results will help in providing a quantitative measure 
of wind energy available in the potential location for renewable energy conversion.

Keyword: Forecasting, modelling, renewable energy, time series method, wind speed 

INTRODUCTION 

In this rapid population growth, the energy demand has increased to support human 
consumption. The negative effect is energy usage has increased the demand on energy 
resulting in depletion of natural resources and will cause a harmful effect towards the 
environment (Ajayi et al., 2014). To overcome this issue, many developed countries are 
now focusing on conserving the non-renewable energy by switching to renewable energy 
sources like wind and solar. Wind power is one of the natural sources of renewable energy 
that is experiencing the fastest growth is the wind energy.  Unlike solar energy, wind 
power can provide energy throughout day and night since it does not require any sunlight 
(Petinrin & Shaaban, 2015). 

Many researchers have studied wind speed modelling and forecasting using various 
models which were developed in improving the wind speed forecasting accuracy (Chang 
et al., 2016; De Freitas et al., 2018; Norrulashikin et al., 2018; Sharma & Singh, 2018). 
According to Erdem et al. (2014), there are two main aspects to be considered in building 
a wind speed prediction model which is to predict the mean wind speed and the wind speed 
volatility. Commonly used models include autoregressive (AR) model, moving average 
(MA) model (Akcan, 2017), autoregressive moving average (ARMA) model (Lujano-Rojas 
et al., 2011), and autoregressive integrated moving average (ARIMA) model (Radziukynas 
& Klementavicius, 2014). These models assume that the occurrence of turbulence in the 
wind speed is constant or in other words, homoscedastic. However, wind speed series can 
exhibit the characteristics of nonlinear variance where it is often referred to as volatility 
and may vary over time. Therefore, the presence of nonlinear variance in a model needs to 
be investigated before any prediction is performed. If the error estimation for this variation 
of wind speed is underestimated, the prediction model might fail to provide accurate wind 
speed forecasting that will cause serious problems in the operation of wind turbine (Engle, 
2001).

Hence, this study was conducted to propose a forecasting model using the ARIMA 
model. The proposed model with the presence of serial autocorrelation and effect of 
heteroscedasticity in the residual part of the series would be treated using the Generalized 
Autoregressive Conditional Heteroskedastic (GARCH) model. A related study by Masseran 
(2016) used an ARIMA-ARCH model to investigate the effect of mean and volatility of 
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the wind speed. Yan et al. (2016) suggested the ARIMA-GARCH model for forecasting a 
short-term wind speed series. The proposed model had successfully managed to capture the 
heteroscedasticity of wind speed series and gave a higher prediction accuracy compared 
to the ARIMA model. Based on Lojowska et al. (2010), the advantage of modelling using 
ARMA-GARCH model is that it has the capability to handle the dominant criteria of 
the data series, which is distribution, time dependence structure as well as periodicity. 
For the purpose of wind speed forecasting, Grigonytė & Butkevičiūtė (2016) used the 
ARIMA model to forecast a short-term wind speed in Latvia and the forecasting accuracy 
for the proposed model was based on root mean square error (RMSE) and mean absolute 
percentage error (MAPE) and mean absolute error (MAE) which allowed to establish an 
optimal model structure. While Sharma and Ghosh (2016) used MAPE in measuring the 
short-term wind speed forecasting in India and the finding suggested that ARIMA-GARCH 
model yielded smallest value of MAPE compared to other proposed models.

The aim of this study was to develop a time series model of daily wind speed series 
in Peninsular Malaysia. Box-Jenkins ARIMA model was used to model the series of each 
18 stations and 15 stations were found to have a serial correlation and heteroscedastic 
effect in the residuals of the proposed model. Therefore, an ARIMA-GARCH model that 
is proven to help in capturing the serial autocorrelation and the heteroscedastic effects 
of a time series process was used. This hybrid model would help to overcome the linear 
limitation of ARIMA model for the purpose of obtaining a time series model that yielded 
higher accuracy of forecasting results.

MATERIALS AND METHODS 

This research used a daily wind speed series collected from Malaysian Meteorological 
Department (MMD) which consisted of data from 1990 to 2014. Data of daily wind speed 
series from 18 meteorological stations throughout the Peninsular Malaysia were chosen for 
this study from different regions. The last 365 days of daily wind speed data for each station 
would be considered as the out-sample data which will be compared with the forecasted 
daily wind speed series based on the best fitted model. In this study, time series analysis 
was applied due to the ability to interpret the presence of internal structure that might occur 
to the data point taken over time. For instance, the condition of serial autocorrelation and 
heteroscedastic effects should be taken into account in the analysis.

Data Description 

The daily wind speed data from 18 different locations in Peninsular Malaysia with a 
duration from 1/1/1990 to 31/12/2014 were used in this study. The location in Peninsular 
Malaysia were divided into 4 regions, namely: northern, east coast, central, and southern. 
The northern region consists of stations that are located in Perlis, Kedah, Pulau Pinang 
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and Perak, while the east coast region consists of stations that are located in the state of 
Kelantan, Terengganu, and Pahang. The central region consists of stations that are located 
in Selangor, Kuala Lumpur, and Putrajaya, and the southern region consists of stations 
that are located in Negeri Sembilan, Melaka, and Johor. The detailed information on the 
stations used in this study are given in Table 1 while Figure 1 shows the location of the 
stations on the map of Peninsular Malaysia. 

Table 1
Coordinates for 18 stations used for wind speed data collection in Peninsular Malaysia

Location Station Latitude Longitude
Chuping NS1 6°28'47.0"N 100°15'36.1"E
Langkawi NS2 6°20'13.0"N 99°43'35.4"E
Bayan Lepas NS3 5°17'43.4"N 100°16'06.6"E
Butterworth NS4 5°27'53.9"N 100°22'59.2"E
Lubok Merbau NS5 4°47'42.9"N 100°53'46.6"E
Sitiawan NS6 4°13'17.1"N 100°42'05.5"E
Kota Bharu ES7 6°09'12.6"N 102°18'41.0"E
Kuala Terengganu ES8 5°22'59.3"N 103°06'28.8"E
Cameron Highland ES9 4°29'04.0"N 101°22'17.4"E
Kuantan ES10 3°46'22.9"N 103°12'42.3"E
Subang CS11 3°07'52.0"N 101°33'09.8"E
Petaling Jaya CS12 3°06'26.0"N 101°38'52.9"E
Sepang CS13 2°43'54.2"N 101°42'10.5"E
Melaka SS14 2°15'17.2"N 102°14'36.0"E
Mersing SS15 2°26'42.6"N 103°49'52.6"E
Batu Pahat SS16 1°52'14.5"N 102°59'25.6"E
Kluang SS17 2°01'41.6"N 103°19'14.0"E
Senai SS18 1°38'20.3"N 103°39'57.0"E

ARIMA Model

In time series analysis, the Box-Jenkins method is the commonly used method to model a 
wind speed time series data. The first step is model identification which include measuring 
the stability of the mean and the stationarity of the time series. The transformation approach 
is needed if the data does not satisfy these conditions. This can be done by observing the 
time series and ACF plots of the collected wind speed data. A hypothesis testing using the 
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Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test can be used to determine the stationarity 
of the wind speed time series data, where the null hypothesis is the data series is stationary 
(Kwiatkowski et al., 1992). The formulation for the KPSS test is given by Equation 1:

𝑦𝑡 = 𝛽𝑡 + 𝑟𝑡 + 𝜀𝑡.      [1]

Note that r_t=r_(t-1)+u_t , where r_t represents a random walk while u_t are iid 
(0, σ_u^2). For a p-value that is significantly low than 0.05, the null hypothesis will 
be rejected which indicates that the wind speed series in not stationary and requires a 
differencing approach. For the model selection, autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plot provides the information on the potential models 
where it identifies the number of terms for autoregressive order p and moving average 
order q (Miswan et al., 2015). 

Figure 1. Location of wind stations in Peninsular Malaysia
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The general form of autoregressive integrated moving average ARIMA (p, d, q) can 
be defined as Equation 2:

𝜑 𝐵 1− 𝐵 𝑑𝑦𝑡 = 𝜃(𝐵)𝜀𝑡      [2]

where y_t and ε_t are the observed values of wind speed series and the random error terms 
at time period t, respectively. φ_1, φ_2, φ_3,…, φ_p are the autoregressive coefficients 
with order p. d is the order of  differencing, and θ_1, θ_2, θ_3,…, θ_q are the moving 
average coefficients with order q. B is the backward shift operator, while, φ(B) and θ(B) 
are polynomials of order p and q respectively, and defined as follows (Wang et al., 2015):

𝜑 𝐵 = 1−𝜑1𝐵 −𝜑2𝐵2 −⋯−𝜑𝑝𝐵𝑝

𝜃 𝐵 = 1− 𝜃1𝐵 − 𝜃2𝐵2 − ⋯−𝜃𝑞𝐵𝑞.

Serial Correlation

A statistical inference of time series analysis will be affected by the presence of serial 
correlation. A fitted model is appropriate or accurate if the residuals has the conditions of 
zero mean, homoscedastic, independent, and normally distributed (Jamaludin et al., 2016; 
Yürekli et al., 2005). One of the very useful diagnostic tools to measure the existence of 
a serial autocorrelation for residuals in the stationary ARIMA model is using the Ljung-
Box (LB) test (Kim et al., 2004). The null hypothesis was set to the absence of serial 
autocorrelation in the residuals from the ARIMA model and was performed towards the 
residuals of a fitted ARIMA model instead of the original time series data. The decision 
making for the test is based on Equation 3:

𝑄 = 𝑇 𝑇 + 2 ∑ 𝑟𝑘2

𝑇−𝑘
𝐿
𝑘=1 ;   [3]

where T is denoted as the length of the time series, k represents the number of parameters 
to be estimated in the model, r_k^2 denotes the sample autocorrelation at lag k, and L is 
the number of autocorrelation lag to be tested. The Q-statistics in Equation 3 approximately 
follows a chi-square distribution with L degree of freedom (Wang et al., 2015).

The Autoregressive Conditional Heteroscedasticity (ARCH) Effect

Besides checking for the presence of serial correlation, the test to check on the existence 
of heteroscedasticity in the residual of the model should also be performed. The result can 
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also be supported by performing ARCH Lagrange Multiplier (LM) test to determine the 
existence of heteroscedasticity in the residuals of the model. 

Engle’s Lagrange Multiplier Test for the ARCH Effect

Uncorrelated time series models might still have a serial dependence due to the dynamic 
conditional variance process. The existence of an ARCH effect in the ARIMA model occur 
if the model exhibits autoregressive conditional heteroscedasticity. If the ARCH effect is 
neglected, the consequences might result to large arbitrary loses in asymptotic efficiency 
which will lead to an extreme rejection of the standard test for the mean autocorrelation 
(Sjölander, 2011). To assess the significance of an ARCH effect, Engle (1982) proposed a 
methodology using Lagrange Multiplier (LM) test to assess the presence of ARCH effect 
based on the regression. The decision making of this test is based on Equation 4:

𝑒𝑡2 = 𝑎�0 + �𝑎�𝑠𝑒𝑡−𝑠2
𝑞

𝑠=1

              [4]

where e_t is the residual series and a_s is the estimated coefficients of the fitted model. In 
this test, the null hypothesis is set to be that there is no existing ARCH component up to 
order q; i.e. a_s=0 for all s=1, 2, …., q. The alternative hypothesis is there are presence of 
ARCH components in at least one of the estimated a_s coefficients (Yusof et al., 2013). 
The test statistics for this test is given by TR2. It follows a chi-square distribution with q 
degree of freedom, where R denotes the sample multiple correlation coefficient based on 
the computation from the regression in Equation 4, and T is the number of observations 
(Wang et al., 2005). 

The GARCH Model

Generalized Autoregressive Conditional Heteroscedastic (GARCH) model was developed 
by Bollerslev (1986). It helps the ARIMA (p, d, q) model to capture the heteroscedastic 
effect in a time series process. In modelling a univariate time series, let y_t=μ_t+ε_t denote 
the mean equation with respect to time t, where the conditional mean of y_t is represented 
by μ_t, while ε_t is denoted as the shock at time t and the equation is ε_t=v_t σ_t where 
it follows a distribution of ε_t~ iid N (0,1). Then, the conditional variance of y_t denoted 
by σ_t^2, that follows a GARCH (p,q) model can be expressed in Equation 5:

𝜎𝑡2 =∝0 +∑ ∝𝑖 𝜀𝑡−𝑖2𝑝
𝑖=1 + ∑ 𝛽𝑖𝜎𝑡−𝑖2𝑞

𝑖=1                [5]
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where the value of ∝0 is always positive, while the sum of ∝i and βi  is less than 1 up 
to order p and q. The coefficient of parameters that represent ARCH and GARCH are 
represented by ∝i and βi, respectively. 

The ARIMA-GARCH Model
The ARIMA-GARCH model is known to have two procedures where the first part models 
the linear part of the wind speed series using ARIMA model, while the residual part consists 
of the nonlinear data (Yaziz et al., 2013). Then, using the GARCH model, the residuals that 
display only the nonlinear pattern will be modelled and the combination of the ARIMA 
model and GARCH error component will give a model that can capture the dynamics of the 
wind speed series which can be used to forecast wind series. The standard GARCH (1,1) 
model was used to capture the heteroscedastic effect of the time series process in this study. 

Forecasting Accuracy Measures
The final part of this study was to forecast the wind speed data based on the best fitted 
proposed model as well as examine the adequacy and accuracy of the proposed model. 
The adequacy and accuracy checking involve the investigation of the error terms in the 
proposed model. This study would use RMSE and MAPE as forecasting accuracy measures 
which are given by Equation 6 and 7:

;     [6]

𝑀𝐴𝑃𝐸 = 1
𝑛
∑ (𝑦𝑗� −𝑦𝑗)

𝑦𝑗
𝑛
𝑗=1  × 100 ;    [7]

where the sample size is denoted by n, while 𝑦𝑗� is the predicted value based on proposed 
model at time j and yj is the observed value at time j. According to a study by Moreno et 
al. (2013), the MAPE can be considered as one of the commonly used methods to measure 
forecasting accuracy since it has a feature that is reliable, easy to interpret, clarity of 
presentation, support of statistical evaluation, and it uses all the information related to 
the error (Moreno et al., 2013). The interpretation for the typical MAPE value which was 
explained by Lewis (1982) are presented in Table 2.

Table 2
Interpretation of typical MAPE values

MAPE Interpretation
< 10 Highly accurate forecasting
10 – 20 Good forecasting

MAPE Interpretation
20 – 50 Reasonable forecasting
> 50 Inaccurate forecasting
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RESULTS AND DISCUSSION

Descriptive Statistics

Figure 2 illustrates the central tendency, the dispersion, and the skewness of the wind speed 
data. The outliers present in the boxplot for each station represent a high wind speed reading 
in a certain time and location. The presence of these extreme values in wind speed data is 
very pronounced in data processing. Based on Figure 2, the median of the data for all wind 
stations were in the range of 6 m/s to 9 m/s. The dispersion of the data that represented by 
the tail of the boxplot showed a wide dispersion which also indicates volatility. The boxplot 
also shows that all stations exhibited a positive skewness. It means that the wind speed 
series for all stations in Peninsular Malaysia were not normally distributed. Therefore, in 
order to capture the variability and volatility, the Box-Jenkins methodology was applied 
to model the wind speed data for all wind stations in Peninsular Malaysia.

Figure 2. Boxplot of 18 wind stations in Peninsular Malaysia

ARIMA Model

The first step in building a time series model using the Box-Jenkins methodology is the 
model identification. This step is intended to determine whether the differencing is required 
in order to obtain a stationary time series. In practical sense, a stationary time series is 
known to vary around a constant mean level over time, with a constant variance.  This 
can be determined by observing the time series plot and ACF plot of the wind speed data. 
It also can be done by performing the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, 
where it tests the presence of a unit root in a time series data.
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Figure 3. Time series plot of station NS1; (a) observation data and (b) after first difference.

Figure 4. ACF plot for station NS1; (a) observation data and (b) after first difference.

The time series plot in Figure 3 (a) shows that the mean and variance of wind speed 
series in station NS1 change over time. This indicates that the time series was not stationary. 
The plot presented in Figure 4 (a) also proves that station NS1 was not stationary due to the 
slow decay displayed in the ACF plot. This suggest that the data must undergo differencing. 
A non-stationary time series can be transformed to stationary if the differences among pairs 
of observation at lags are calculated. After the first differencing approach was applied, 
Figure 3 (b) and Figure 4 (b) show that the wind speed data in station NS1 are stationary. 
To support the findings, the KPSS test was performed to determine the stationarity of the 
daily wind speed time series data, where the null hypothesis was the data series is stationary. 
For a p-value that was significantly lower than 0.05, the null hypothesis would be rejected 
which indicated that the wind speed series was not stationary and required a differencing 
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approach. The results of KPSS test for stationarity are presented in Table 3 where the 
findings concluded that five stations showed a stationary wind speed series, while 12 other 
stations satisfied this condition after first differencing (d=1).

Table 3
The KPSS test for stationarity of the daily wind speed series

Station
Observation Data First Differencing

KPSS 
Level p-value Stationary KPSS 

Level p-value Stationary

NS1 20.699 < 0.01 NO 0.0012 > 0.1 YES

NS2 0.0619 > 0.1 YES - - -

NS3 0.0827 > 0.1 YES - - -

NS4 3.8562 < 0.01 NO 0.0028 > 0.1 YES

NS5 3.1419 < 0.01 NO 0.0011 > 0.1 YES

NS6 20.181 < 0.01 NO 0.0015 > 0.1 YES

ES7 14.028 < 0.01 NO 0.0012 > 0.1 YES

ES8 24.312 < 0.01 NO 0.0010 > 0.1 YES

ES9 0.2554 > 0.1 YES - - -

ES10 25.534 < 0.01 NO 0.0008 > 0.1 YES

CS11 0.0848 > 0.1 YES - - -

CS12 2.000 < 0.01 NO 0.0015 > 0.1 YES

CS13 3.0304 < 0.01 NO 0.0013 > 0.1 YES

SS14 9.7655 < 0.01 NO 0.0009 > 0.1 YES

SS15 5.3813 < 0.01 NO 0.0011 > 0.1 YES

SS16 1.9574 < 0.01 NO 0.0026 > 0.1 YES

SS17 22.39 < 0.01 NO 0.0016 > 0.1 YES

SS18 0.2095 > 0.1 YES - - -

After satisfying the stationarity condition, the next step in Box-Jenkins method is the 
parameter estimation. In this step, the orders of AR(p) and MA(q) for each station were 
identified using the PACF and ACF plots, respectively. Figure 5 illustrates the ACF plot 
and PACF plot of station NS1 after first differencing approach is done. 
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Figure 5. ACF and PACF plot for station NS1 after first difference

Few models were selected for ARIMA (p, d, q) based on these two plots, and the 
best model was selected based on the Akaike information criterion (AIC) values where 
the model with the lowest AIC value was selected as the best model for ARIMA model 
estimation. These steps were repeated on the remaining stations and the results of the best 
fitted ARIMA model for wind speed series for each station are shown in the Table 4. 

Table 4
Model parameter estimates using the ARIMA (p, d, q) model for daily wind speed series

Location Station Model Coefficient Estimates Standard 
Error

Chuping NS1 ARIMA 
(2,1,1)

AR(1) 0.1858 0.0134
AR(2) 0.1031 0.0132
MA(1) - 0.9329 0.0057

Langkawi NS2 ARIMA 
(1,0,1)

AR(1) 0.5106 0.0628
MA(1) -0.2069 0.0709

Bayan Lepas NS3 ARIMA 
(1,0,1)

AR(1) 0.8738 0.0892
MA(1) -0.8338 0.1008

Butterworth NS4 ARIMA 
(1,1,2)

AR(1) 0.4906 0.0583
MA(1) -1.3395 0.0625
MA(2) 0.3432 0.0621
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Table 4 (Continued)

Location Station Model Coefficient Estimates Standard 
Error

Lubok Merbau NS5 ARIMA 
(1,1,2)

AR(1) 0.6452 0.0863
MA(1) -1.5047 0.0930
MA(2) 0.5198 0.0883

Sitiawan NS6 ARIMA 
(3,1,1)

AR(1) 0.0910 0.0127
AR(2) 0.0246 0.0126
AR(3) -0.0184 0.0126
MA(1) -0.9557 0.0043

Kota Bharu ES7 ARIMA 
(1,1,2)

AR(1) 0.5605 0.0322
MA(1) -1.3219 0.0367
MA(2) 0.3249 0.0365

Kuala 
Terengganu

ES8 ARIMA 
(2,1,1)

AR(1) 0.2803 0.0125
AR(2) 0.0915 0.0124
MA(1) -0.9849 0.0062

Cameron 
Highland

ES9 ARIMA 
(2,0,0)

AR(1) 0.4921 0.0261 
AR(2) 0.0305 0.0262

Kuantan ES10 ARIMA 
(2,1,1)

AR(1) 0.0919 0.0118
AR(2) 0.0675 0.0117
MA(1) -0.9770 0.0048

Subang CS11 ARIMA 
(1,0,1)

AR(1) 0.9522 0.0291
MA(1) -0.9254 0.0355

Petaling Jaya CS12 ARIMA 
(2,1,1)

AR(1) 0.0552 0.0155
AR(2) 0.0343 0.0154
MA(1) -0.9513 0.0062

Sepang CS13 ARIMA 
(1,1,1)

AR(1) 0.1224 0.0137
MA(1) -0.9888 0.0033

Melaka SS14 ARIMA 
(1,1,2)

AR(1) 0.7459 0.0377
MA(1) -1.5496 0.0429
MA(2) 0.5629 0.0401

Mersing SS15 ARIMA 
(1,1,2)

AR(1) 0.6731 0.0362
MA(1) -1.4005 0.0408
MA(2) 0.4196 0.0370
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After parameter estimation, the next step of the Box-Jenkins methodology is model 
diagnostic checking. In this step, the residual of a fitted ARIMA model was tested for the 
presence of serial autocorrelation and heteroscedasticity.

Location Station Model Coefficient Estimates Standard 
Error

Batu Pahat SS16 ARIMA 
(1,1,2)

AR(1) 0.8653 0.0469
MA(1) -1.7653 0.0529
MA(2) 0.7686 0.0517

Kluang SS17 ARIMA 
(1,1,2)

AR(1) 0.7066 0.0524
MA(1) -1.5504 0.0580
MA(2) 0.5648 0.0549

Senai SS18 ARIMA 
(1,0,1)

AR(1) 0.9352 0.0214
MA(1) -0.8738 0.0301

Table 4 (Continued)

Figure 6. Diagnostic checking results for station NS1
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Figure 6 shows the results of diagnostic checking using the Ljung-Box test for station 
NS1. The null hypothesis for the Ljung-Box test was set to be no serial autocorrelation in 
the residual of the fitted ARIMA (p, d, q) model.  Based on the plot, the residuals of the wind 
speed series in station NS1 has a zero mean and constant variance. The ACF plot exhibits 
no correlation in the residuals of the series. The p-value for Ljung-Box test also confirmed 
that the residuals of the series were uncorrelated. This step was performed towards the 
remaining stations and the results are simplified in Table 5. The results of Ljung-Box test 
for the residuals in Table 5 are given into two parts; the figures represent the p-values for 
residuals up to lag 10 followed by the p-value for residuals up to lag 20. In addition, to 
prove that the square residuals are not a sequence of white noise, the Ljung-Box test was 
also performed on the squared residual of the wind speed series.

Table 5

The Ljung-Box test for the residuals and squared residuals of the fitted ARIMA (p, d, q) model of daily wind 

speed series

Station ARIMA 
Model

p-value for Ljung-Box Statistics

Residuals Squared 
Residuals

NS1 ARIMA 
(2,1,1) 0.4028 2.2e-16

NS2 ARIMA 
(1,0,1) 0.0011 2.2e-16

NS3 ARIMA 
(1,0,1) 0.7637 0.00167

NS4 ARIMA 
(1,1,2) 0.2838 2.2e-16
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Table 5 (Continued)

Station ARIMA 
Model

p-value for Ljung-Box Statistics

Residuals Squared 
Residuals

NS5 ARIMA 
(1,1,2) 0.211 0.4394

NS6 ARIMA 
(3,1,1) 0.8291 2.2e-16

ES7 ARIMA 
(1,1,2) 0.4634 2.2e-16

ES8 ARIMA 
(2,1,1) 0.0037 2.2e-16

ES9 ARIMA 
(2,0,0) 0.0608 0.01968

ES10 ARIMA 
(2,1,1) 0.0048 2.2e-16

CS11 ARIMA 
(1,0,1) 0.7672 0.985
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Table 5 (Continued)

Station ARIMA 
Model

p-value for Ljung-Box Statistics

Residuals Squared 
Residuals

CS12 ARIMA 
(2,1,1) 0.9718 0.00294

CS13 ARIMA 
(1,1,1) 0.0486 0.00587

SS14 ARIMA 
(1,1,2) 0.1366 1.098e-13

SS15 ARIMA 
(1,1,2) 0.1366 1.098e-13

SS16 ARIMA 
(1,1,2) 0.3976 2.2e-16

SS17 ARIMA 
(1,1,2) 0.1932 2.2e-16

SS18 ARIMA 
(1,0,1) 0.6180 0.157
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Table 5 shows that the p-values of the Ljung-Box test for stations NS2, ES8, ES10, 
and CS13 show a clear evidence to reject the null hypothesis of no serial autocorrelation. It 
means that the wind speed daily series in these stations shows the presence of autocorrelation 
in the residual of the series. Other stations did not show the presence of serial autocorrelation 
in the residual of the daily wind speed series. On the other hand, the Ljung-Box test for 
the squared residuals with a p-value less than 0.05 indicates the presence of ARCH effect 
in the residuals of the series. Based on the results presented in Table 5, three stations were 
found to be not affected by ARCH effect, which was station NS5, CS11, and SS18. The 
remaining 15 stations showed that the residuals were a sequence of white noise which also 
indicated the presence of ARCH effect in the daily wind speed series. Therefore, to conclude 
on the presence of heteroscedasticity in the series, the LM test was applied towards the 
residuals of the fitted ARIMA models and the result are presented in Table 6.  The null 
hypothesis for this test is there is no ARCH effect presence in the residual of the models. 
For a p-value that is lower than 0.05, the null hypothesis is rejected which indicates that 
the model residuals significantly exhibit an ARCH effect. 

Table 6

The LM test for the residuals of the fitted ARIMA (p, d, q) model of daily wind speed series

Station ARIMA Model Residuals Squared Residuals
p-value p-value

NS1 ARIMA (2,1,1) 2.2e-16 1.928e-05
NS2 ARIMA (1,0,1) 1.029e-08 0.9162
NS3 ARIMA (1,0,1) 0.0449 0.0471
NS4 ARIMA (1,1,2) 2.2e-16 0.0110
NS5 ARIMA (1,1,2) 0.4922 1
NS6 ARIMA (3,1,1) 2.2e-16 2.2e-16
ES7 ARIMA (1,1,2) 2.2e-16 0.9999
ES8 ARIMA (2,1,1) 2.2e-16 0.2241
ES9 ARIMA (2,0,0) 0.0414 0.9448
ES10 ARIMA (2,1,1) 2.2e-16 0.9847
CS11 ARIMA (1,0,1) 0.9865 1
CS12 ARIMA (2,1,1) 0.0056 0.9338
CS13 ARIMA (1,1,1) 0.0175 0.9995
SS14 ARIMA (1,1,2) 3.228e-06 0.5071
SS15 ARIMA (1,1,2) 2.997e-11 1
SS16 ARIMA (1,1,2) 2.834e-16 0.3848
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The results in Table 6 show that the 3 stations; NS5, CS11, and SS18 were not affected 
by the heteroscedasticity effect based on the p-values of the residuals of the LM test. This 
was also supported by the Ljung-Box test in Table 5 for squared residuals. Hence, it can be 
concluded that the proposed ARIMA model for these 3 stations are suitable for forecasting 
the daily wind speed series in the respective location. On the other hand, the remaining 15 
stations verify that the ARCH effect was established in the wind speed daily series for these 
stations. Therefore, to cater the issue of the presence of serial autocorrelation and ARCH 
effect in the residual of fitted ARIMA (p, d, q) model, GARCH modelling is necessary to 
model the nonlinear part of the daily wind speed series. 

ARIMA-GARCH Modelling

The ARIMA model explains the linear part of the data, while the nonlinear characteristics 
is explained using the GARCH model which is derived based on the residual series of an 
ARIMA model. In this study, the method used to model the variance behavior was using 
the standard GARCH (1,1) model.

Table 7
The result for the estimated ARIMA-GARCH model for wind speed data in Malaysia

Table 6 (Continued)

Station ARIMA Model Residuals Squared Residuals
p-value p-value

SS17 ARIMA (1,1,2) 2.2e-16 0.0007
SS18 ARIMA (1,0,1) 0.1865 1

Station Model
Parameter Estimates Ljung-Box 

Test LM Test

μ α β p-value p-value

NS1 ARIMA 
(2,1,1) – 
GARCH 
(1,1)

0.0053 0.3363 0.0975 0.8176 0.0521 0.0131

NS2 ARIMA 
(1,0,1) – 
GARCH 
(1,1)

8.1178 1.0888 0.1384 0.6731 0.9053 0.9722
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Table 7 (Continued)

Station Model
Parameter Estimates Ljung-Box 

Test LM Test

μ α β p-value p-value

NS3 ARIMA 
(1,0,1) – 
GARCH 
(1,1)

8.4873 0.3458 0.0638 0.8489 0.9762 0.9510

NS4 ARIMA 
(1,1,2) – 
GARCH 
(1,1)

0.0003 0.0645 0.0258 0.9615 0.0000 0.1256

NS6 ARIMA 
(3,1,1) – 
GARCH 
(1,1)

0.0018 0.0936 0.0362 0.9376 0.2195 0.0812

ES7 ARIMA 
(1,1,2) – 
GARCH 
(1,1)

-0.0010 0.2578 0.1092 0.8551 0.0077 0.0902

ES8 ARIMA 
(2,1,1) – 
GARCH 
(1,1)

-0.0020 0.1026 0.1191 0.8763 0.0000 0.0007

ES9 ARIMA 
(2,0,0) – 
GARCH 
(1,1)

7.7551 1.7030 0.1552 0.4489 0.6530 0.3274

ES10 ARIMA 
(2,1,1) – 
GARCH 
(1,1)

0.0017 0.0707 0.0543 0.9390 0.7439 0.5164

CS12 ARIMA 
(2,1,1) – 
GARCH 
(1,1)

0.0005 1.6691 0.0647 0.6595 0.4033 0.4569

CS13 ARIMA 
(1,1,1) – 
GARCH 
(1,1)

0.0002 0.0795 0.0169 0.9655 0.6070 0.7862
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Table 7 gives the result of the ARIMA-GARCH model. The mean behaviour of the 
daily wind speed series was modelled using ARIMA model, while the standard GARCH 
(1,1) model captured the conditional variance in the residuals of the series. In this case, 
the GARCH model was used to cater the existence of the ARCH effect in the residual 
of daily wind speed series. The diagnostic checking was conducted once again on the 
ARIMA-GARCH model. The Ljung-Box test was used to check the presence of serial 
autocorrelation in the standardized squared residuals from the GARCH model. Based on 
the p-values in Table 7, it can be concluded that the serial autocorrelation no longer existed 
in the model except for 4 stations which were NS4, ES7, ES8, and SS14. The test was 
performed on the residuals of the hybrid model using the LM test to investigate the existence 
of remaining ARCH effect in the residuals of the model. The results in Table 7 prove that 
there was still ARCH effect in stations NS1 and ES8. For the stations NS2, NS3, NS6, ES9, 
ES10, CS12, CS13, SS15, SS16, and SS17, there was enough evidence to conclude that 
the daily wind speed series were free from the conditional heteroscedasticity. This shows 
that the ARIMA-GARCH model has precisely captured the dynamics in the wind speed 
daily series. However, further investigation should be done to treat the presence of serial 
autocorrelation in time series data collected from the stations NS4, ES7, ES8, and SS14, 
and the presence of ARCH effect in time series data collected from the stations NS1 and 

Table 7 (Continued)

Station Model
Parameter Estimates Ljung-Box 

Test LM Test

μ α β p-value p-value

SS14 ARIMA 
(1,1,2) – 
GARCH 
(1,1)

0.0004 0.0115 0.0124 0.9853 0.0119 0.3177

S S15 ARIMA 
(1,1,2) – 
GARCH 
(1,1)

-0.0011 1.5383 0.1468  0.6303 0.13388 0.22325

S S16 ARIMA 
(1,1,2) – 
GARCH 
(1,1)

0.0000 0.2179 0.0679 0.8831 0.7664 0.4526

S S17 A R I M A 
(1,1,2) – 
G A R C H 
(1,1)

0.0001 0.0103   0.0294   0.9691 0.14448 0.7983
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ES8 using other type of GARCH family models since it has proven to be very successful 
in describing the volatility dynamics in a short period of time (Jamaludin et al., 2016). 

Forecasting Capabilities using ARIMA Model and ARIMA-GARCH Model

The performance of the proposed model was tested based on the capability of forecasting 
future daily wind speed series. The model was built using the in-sample data and then was 
projected for 365 days ahead. This forecasted series that is estimated based on the best 
fitted model was compared with the last 365 of out-sample data and the accuracy of the 
forecasting model was evaluated from the RMSE and MAPE values where the lowest value 
indicates a better performance. The results of RMSE and MAPE between the in-sample 
and out-sample data are given in Table 8. Forecasting interpretation based on Table 1 is 
also included in the Table 8.

Table 8
The result of forecast accuracy using RMSE and MAPE and forecasting interpretation

Station Model In-Sample Out-Sample Forecasting 
InterpretationRMSE MAPE RMSE MAPE

NS2 ARIMA 
(1,0,1) - 
GARCH 
(1,1)

2.4554 23.7161 2.3163 23.7408 Reasonable

NS3 ARIMA 
(1,0,1) - 
GARCH 
(1,1)

1.9921 16.907 2.1799 16.3708 Good

NS5 ARIMA 
(1,1,2)

1.4156 13.7443 1.4401 15.4814 Good

NS6 ARIMA 
(3,1,1) - 
GARCH 
(1,1)

1.4584 13.7489 1.3166 15.2564 Good

ES9 ARIMA 
(2,0,0) - 
GARCH 
(1,1)

2.1346 19.8658 2.3821 20.3147 Reasonable

ES10 ARIMA 
(2,1,1) - 
GARCH 
(1,1)

1.8198 14.9371 1.6481 14.0077 Good
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Table 8 shows that the proposed model could forecast the daily wind speed series where 
the values of RMSE and MAPE of the out-sample data followed closely the in-sample data 
for ARIMA model and ARIMA-GARCH model. The values of MAPE for the proposed 
model shows that 11 out of 13 station (85%) gave good forecasts while the other 2 stations 
(15%) forecasted reasonably well as mentioned in Lewis (1982). Figure 7 shows the 
distribution of the best fitted model for 13 locations of wind stations in Peninsular Malaysia. 

Table 9 shows that the ARIMA and ARIMA-GARCH model could modelled most 
of the stations in the northern, east coast, central and southern regions. There were 3 
stations (16.68%) in the northern, central, and southern regions that could be modelled 
using ARIMA modelling. For ARIMA-GARCH modelling, 10 stations (55.56%) out of 
18 were able to be modelled using the hybrid model. This shows that 13 stations (72.24%) 
out of 18 wind stations in Peninsular Malaysia were successfully modelled using a time 

Table 8 (Continued)

Station Model In-Sample Out-Sample Forecasting 
InterpretationRMSE MAPE RMSE MAPE

CS11 ARIMA 
(1,0,1)

2.1572 18.8206 1.7758 17.3518 Good

CS12 ARIMA 
(2,1,1) - 
GARCH 
(1,1)

1.9336 17.2430 1.8117 15.9246 Good

CS13 ARIMA 
(1,1,1) - 
GARCH 
(1,1)

1.5761 14.8005 1.8743 14.3288 Good

SS15 ARIMA 
(1,1,2) - 
GARCH 
(1,1)

1.9593 15.0709 1.7438 13.7584 Good

SS16 ARIMA 
(1,1,2) - 
GARCH 
(1,1)

1.5367 14.8042 1.3239 13.3581 Good

SS17 ARIMA 
(1,1,2) - 
GARCH 
(1,1)

1.6702 16.0472 1.2368 13.4531 Good

SS18 ARIMA 
(1,0,1)

2.0314 19.685 1.9686 17.7601 Good
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series modelling. These results have proven the ability of the proposed models for wind 
speed forecasting and may be used to predict the future pattern of daily wind speed series 
in Peninsular Malaysia. The results of wind speed prediction can be used to provide a 
quantitative measure of wind energy available in the potential location for renewable 
energy conversion (Barbosa de Alencar et al., 2017). Further studies are required for the 
remaining 5 stations (27.78%) that give a non-conclusive result due to failure in modelling 
the volatility of the daily wind speed using both ARIMA and ARIMA-GARCH.

To check the forecasting performance of ARIMA-GARCH modelling, the 3 stations 
that had an adequate model of ARIMA was tested once again using ARIMA-GARCH. The 
forecasting accuracy measure as mentioned in Lewis (1982) for the out-sample for each 
station are illustrated in Table 10.

Figure 7. Results of ARIMA and ARIMA-GARCH models
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Table 9

Percentage of proposed model based on region of wind stations

Region Total
Station

ARIMA ARIMA-GARCH Non- Conclusive

Station Percent Station Percent Station Percent

North 6 1 5.56% 3 16.67% 2 11.11%

East 
Coast

4 0 0% 2 11.11% 2 11.11%

Central 3 1 5.56% 2 11.11% 0 0%

South 5 1 5.56% 3 16.67% 1 5.56%

Total 18 3 16.68% 10 55.56% 5 27.78%

Table 10

The result of forecasting performance of ARIMA-GARCH modelling

Location Station
ARIMA ARIMA-GARCH

Forecasting 
InterpretationRMSE MAPE RMSE MAPE

Lubok 
Merbau NS5 1.4401 15.4814 1.4529 15.6325 Good

Subang CS11 1.7758 17.3518 1.7697 16.6947 Good

Senai SS18 1.9686 17.7601 2.0671 17.6552 Good

Based on these results, it shows that even though the ARIMA model has proven to 
be adequate in modelling these 3 stations, the ARIMA-GARCH modelling also gives a 
good forecasting accuracy based on the forecasting interpretation by Lewis (1982). These 
models can be used in forecasting the daily wind speed in the wind station with a good 
forecasting result.

CONCLUSION AND FUTURE WORK

This study led to the construction of a time series model of daily wind speed series of 18 
meteorological stations in Peninsular Malaysia. The Box-Jenkins ARIMA modelling was 
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used to build a model of wind speed series for each station. In measuring the adequacy of 
the proposed ARIMA model, 3 stations: NS5, CS11, and SS18, were proven to be suitable 
for forecasting the wind speed series using the ARIMA model while the 15 other stations 
are affected by the presence of serial autocorrelation as well as ARCH effects. To overcome 
the issue, we used the ARIMA-GARCH model for 15 stations. The results show that 10 
stations were successfully modelled using the ARIMA-GARCH model while 5 stations 
required other methods of modelling. Future work is needed to improve the limitation of 
the ARIMA-GARCH model for the remaining 5 stations. As for the 13 stations that had 
successfully been modelled using the time series, future work can be done by calculating 
the wind power density of each stations in Peninsular Malaysia in order to provide a 
quantitative measure of wind energy available in the potential location for renewable 
energy conversion. 
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